Code for Quiz 6.
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos select (in this order) ticker, year, grossmargin
Extract observations for 2018
Assign output to health_subset
# A tibble: 13 × 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer…
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer…
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer…
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer…
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer…
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer…
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer…
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer…
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer…
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer…
Question: join_ticker
Start with drug_cos
Extract observations for the ticker “MRK” from drug_cos
Assign output to the variable drug_cos_subset
Assign the output to combo_df
drug_cos_subset
# A tibble: 8 × 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
display: combo_df
combo_df
# A tibble: 8 × 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Note: the variables ticker, name, location and industry are the same for all the observations Assign the company name to co_name
Assign the company location to co_location
Assign the industry to co_industry group
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Merck & Co Inc is located in Merck & Co Inc and is a member of the Merck & Co Inc industry group.
Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
Assign the output to combo_df_subset
Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal. grossmargin_check = gp / revenue Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue ,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue ,
close_enough = abs(netmargin_check - netmargin) <0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Question: summarize_industry
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate
mean_netmargin_percent = mean(netincome / revenue) * 100 median_netmargin_percent = median(netincome / revenue) * 100 min_netmargin_percent = min(netincome / revenue) * 100 max_netmargin_percent = max(netincome / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) *100,
median_netmargin_percent = median(netincome / revenue) * 100
)
# A tibble: 9 × 3
industry mean_netmargin_… median_netmargi…
<chr> <dbl> <dbl>
1 Biotechnology -4.66 7.62
2 Diagnostics & Research 13.1 12.3
3 Drug Manufacturers - General 19.4 19.5
4 Drug Manufacturers - Specialty & … 5.88 9.01
5 Healthcare Plans 3.28 3.37
6 Medical Care Facilities 6.10 6.46
7 Medical Devices 12.4 14.3
8 Medical Distribution 1.70 1.03
9 Medical Instruments & Supplies 12.3 14.0
mean netmargin percent for the industry “Diagnostics & Research” = 13.1% median netmargin percent percent for the industry “Diagnostics & Research” = 12.33%
***** Question: inline_ticker
Use the health_cos data
Extract observations for the ticker ZTS from health_cos and assign to the variable health_cos_subset
Display health_cos_subsethealth_cos_subset
# A tibble: 8 × 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoetis I… 4.23e9 2.58e9 4.27e8 2.45e8 5.71e 9 1975000000
2 ZTS Zoetis I… 4.34e9 2.77e9 4.09e8 4.36e8 6.26e 9 2221000000
3 ZTS Zoetis I… 4.56e9 2.89e9 3.99e8 5.04e8 6.56e 9 5596000000
4 ZTS Zoetis I… 4.78e9 3.07e9 3.96e8 5.83e8 6.59e 9 5251000000
5 ZTS Zoetis I… 4.76e9 3.03e9 3.64e8 3.39e8 7.91e 9 6822000000
6 ZTS Zoetis I… 4.89e9 3.22e9 3.76e8 8.21e8 7.65e 9 6150000000
7 ZTS Zoetis I… 5.31e9 3.53e9 3.82e8 8.64e8 8.59e 9 6800000000
8 ZTS Zoetis I… 5.82e9 3.91e9 4.32e8 1.43e9 1.08e10 8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct. Go to the help pane to see what distinct does In the console, type ?pull. Go to the help pane to see what pull does
Run the code below health_cos_subset %>% distinct(name)
%>%
pull(name)
Assign the output to co_name
You can take output from your code and include it in your text.
The name of the company with ticker ZTS is Zoetis Inc In following chuck
Assign the company’s industry group to the variable co_industry
This is outside the Rchunck. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group
start with health_cos THEN gorup_by industry THEN calculate the
median research and development expenditure by industry assign the
output to df
glimpse
to glimpse the data for the plotsRows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x= NULL, y= NULL) +
theme_classic()
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")